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1.  Introduction 

Consider a real -dimensional Kaehlerian manifold denoted like  is prepared with a set of 

coordinate neighborhoods  in using indices which range and -

dimensional Riemannian manifold ), prepared with a set of coordinate neighborhoods , 

in  the indices etc, at range an almost complex structure tensor  and a 

Hermitian metric tensor . Then, we have obtained: 

                                                                                       (1.1) 

                                                                                                                      (1.2) 

represents the operator for covariant differentiation, which operates in relation to the Christoffel 

symbols , constructed using the metric tensor . 

If  is isometrically fixed within during the immersion map , and we 

recognize by  itself. Also, we describe this immersion as  and 

define , , which are  linearly independent lie tangent to within the larger 

manifold  Since the immersion preserves distances, we can express this as follows: 

,                                                                                                              (1.3) 
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Again, if equally orthogonal unit normal to  in the indices path  ended the 

range . Hence  Guass  equation is: 

,                                                                                                             (1.4) 

Here, represents the symbol of covariant differentiation along and using derived form , 

along with  formed using . Additionally, we have the second fundamental tensors  of 

concerning the normal vector , and Weingarten tensors. 

,                                                                                                         (1.5) 

Also, if    is metric tensor of the regular bundle, then we get: 

, 

If change any vector  lie tangent to then  results in another vector that remains tangent to 

it implies the existence of a type  tensor field denoted as  on . That is  is invariant 

in  , When it comes to transformations performed by  or the normal   , we come upon 

equations that are structured like so: 

where .                                                 (1.6) 

.                                                                                                              (1.7) 

We put , then we have  

From (1.1), (1.3), (1.6) and (1.7), we easily see that: 

,                                                                                    (1.8) 

.                                                                                                               (1.9) 

Differentiating (1.6) and (1.7) covariantly along  and using (1.2), (1.4) and (1.5), we find: 

                                                                                                                  (1.10) 

                                                                                                                  (1.11) 

                                                                                                         (1.12) 

Thus, equations (1.8) and (1.10) show that  is also Kaehlerian manifolds. Moreover, it follows from 

(1.12), that is,  is minimal, then we get: 

                                                                                                                   (1.13) 

Using (1.8), (1.9) and (1.12) we easily verify that: 

.                                                                                                    (1.14) 

The Equations of Gauss and Codazzi for the submanifold  are expressed as follows: 
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                                                          (1.15) 

                                                               (1.16) 

Where  is the curvature tensor of . 

Lastly, we establish a useful identity on a Kaehlerian manifold , that is: 

                                                                                              (1.17) 

2.   Infinitesimal Variation of  Invariant Submanifolds.  

We examine an infinitesimal variation of the invariant submanifold within the context of the 

Kaehlerian manifold  , thus 

                                                                                               (2.1) 

Here represents a vector field on  defined along  and is an infinitesimal. Then we 

get: 

                                                                                                 (2.2)                                                                                           

Here, we have , which represents a set of linearly independent tangent vectors on the 

perturbed submanifold. We proceed to displace these vectors in a parallel, transitioning them from 

their positions at the perturbed point  to the reference point  This displacement leads to the 

derivation of new vectors. We get: 

 

And at the point , then: 

                                                                                               (2.3) 

Disregarding higher order terms with respect to  we get: 

.                                                                                          (2.4) 

Throughout the discussion, we consistently disregard terms beyond first order concerning . As a 

result, we can express this as follows: 

                                                                                                      (2.5) 

We have from (2.3) 

                                                                                                      (2..6) 

Putting: 

                                                                                                 (2.7) 

We have  

.                                                (2.8) 

Because of (1.4)  and (1.5). 
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Now, let  mutually orthogonal unit normals to the varied submanifold, 

obtained by parallel displacement from the point  to In this context, we obtain: 

                                                                                 (2.9) 

We put  

 .                                                                                                    (2.10)      

And assume that  is of the form  

                                                                            (2.11) 

Then, form (2.9), (2.10) and (2.11), we have 

                                                             (2.12) 

Applying the operator  to  and using (2.6), (2.8), (2.11) and  we find 

 

Where   and   or  

                                                                                       (2.13) 

Where    and   is   and then (2.11) and  we find  

                                                                                                      (2.14) 

Where    

We assume that the infinitesimal change given by (2.1) remains constant on an invariant submanifold, 

then 

are linear combinations of  .                                                            (2.15) 

Then, using  and (1.6), we see that  

 

 

 
That is, by (2.2) 

                                                  (2.16) 

Or, using (2.8), 

+                                                    (2.17) 

+  

Thus (2.15) is equivalent to 

                                                              (2.18) 

Or, by (1.12), to 

                                                                                           (2.19) 

Now, we can state the following theorems: 

Theorem 2.1  To establish an infinitesimal variation as complex, then both Necessary and sufficient 

for the variation vector   
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Theorem 2.2  If a vector field induces a complex variation, then a Vector field  with an 

identical normal component as possesses the same characteristic. 

Proof:  Consider an infinitesimal variation described by equation (2.1), which changes a submanifold  

d  into another submanifold  , while maintaining the parallelism of the tangent 

space of the original submanifold at  and the perturbed submanifold at the corresponding point 

. In this case, we pass on to this perturbation asa parallel variation, as deduced from equations 

(2.5), (2.6), and (2.8). 

                                     (2.20) 

Here, an infinitesimal variation to be parallel,  it is necessary and sufficient condition that 

                                                                                                     (2.21) 

If condition (2.21) holds, then it implies the satisfaction of condition (2.19), 

Consequently, we can conclude: 

Theorem 2.3  A parallel variation necessarily qualifies as a complex variation. 

3. Infinitesimal Holomorphic Variations of Invariant Submanifolds of almost Kaehlerian 

manifold: 

Suppose that an infinitesimal variation  carries an invariant submanifold transforming 

it, implies undergoes a complex variation. We get: 

                                                                               (3.1) 

We have from (5.17) and (5.18) 

                                                 (3.2) 

From this fact we conclude following points: 

(i) Assuming to an infinitesimal variation is complex. 

Therefore, express the variation of using equation (3.2).  

We establish the definition of as follows: 

                                                                           (3.3) 

Equations (3.2) and (3.3) imply that  is equivalent to  because of (2.8) and (2.14).In 

the presence of a complex variation that maintains the integrity of  , we label it as holomorphic. 

According to equations  (3.2), (3.3) as well as the remark provided earlier, then 

(ii) A complex variation is deemed holomorphic iff observe 

of  with , that is, 

   or    equivalently  

Hence, relating the operator  to (4.3) with using (5.6), (5.8), Then: 

                                                                           (3.4)  

From which: 

                                                                       (3.5) 
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A variation applied to a submanifold that results in  is termed “isometric” whereas 

when is proportional to , it is referred to as “conformal”.  Consequently, we can conclude 

that: 

(iii) To be consider  eudiometric or conformal, a variation of a 

submanifold must meet both necessary and sufficient conditions such that: 

                                                                                      (3.6) 

Or  

                                                                              (3.7) 

Respectively, is a specific function that is defined as: 

                                                                                                 (3.8) 

We now put: 

                                                                                  (3.9) 

And  

 

Here,  represents the Christoffel symbols associated with the warped submanifold. 

From (2.2) and (2.20) and (3.9), we obtain: 

                              (3.10) 

From this, utilizing Gauss’s equations (2.15) and Codazzi’s  equations  (2.16) for the submanifolds, 

we obtain: 

, (3.11) 

Because of (1.8), A submanifolds variation  is classified as affine when .  

Now, we have the following: 

Theorem 3.1  A complex isometric variation of a compact invariant submanifold  within a 

Kaehlerian manifold requires a fundamental holomorphic structure. 

Proof.  Considering equations (1.14), (3.3) and (3.6), we obtain the subsequent inter connections: 

                                                                                                  (3.12) 

                                                                                                            (3.13) 

And hence 

                                                                                                            (3.14) 

We now calculate  then by using (3.13), we get: 

                                                                                       (3.15) 

Again, by using (3.3), (3.14) and (3.12), we get: 

 

Conversely, when we operate on equation (3.3) with the operator  and make use of the 

condition  we find: 

 
From which, using the Ricci-identity, 
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Also, by using (1.17), we get: 

                                                                  (3.16) 

Confirming that an isometric variation is indeed affine, we consequently establish that: 

 
Because of (3.11), from which: 

 

Because of (1.13). Therefore, . From this fact and (3.15), we get: 

. 

By integrating this expression over the manifold , we observe that , leading to the 

conclusion that the variation is holomorphic, as indicated in (ii). This concludes the proof. 
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